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Simple model for mixing at accelerated fluid interfaces with shear and compression
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A simple model was recently described for predicting linear and nonlinear mixing at an unstable planar
interface between two fluids of different density subjected to an arbitrary time-dependent variable acceleration
history[J. D. Ramshaw, Phys. Rev.38, 5834(1998]. Here we generalize this model to include the Kelvin-
Helmholtz (KH) instability resulting from a tangential velocity discontinuityu, as well as the effects of a
uniform anisotropic compression or expansion of the mixing layer as a whole. The model consists of a
second-order nonlinear ordinary differential equation of motion for the half-widihthe mixing layer. This
equation is derived by combining the wavelength renormalization hypothesis used in the earlier model with a
suitable expression for the rate of change of the kinetic energy of the mixing layer. The resulting generalized
model contains no additional free parameters, and reduces to the previous model in the absence of tangential
velocities and compression. It also reduces in the linear regime to the correct linearized stability equation for
an accelerated shear layer with compresgibnD. Ramshaw, Phys. Rev. &, 1486 (2000]. For a pure
incompressible KH instability in the nonlinear regime, the model predictstthag|Au|t, where n=[ a(2
—0)16(1— 0)]\p1pol (p1+ p,), ande and 6 are parameters appearing in the nonlinear Rayleigh-Taylor and
Richtmyer-Meshkov growth laws. For equal densities and the same parameter values previously used to match
variable-acceleration experimental data, we fipd 0.10, in close agreement with experimental data for free
shear layers.

PACS numbses): 47.20.Bp, 47.20.Ft, 47.20.Ma, 47.21.

I. INTRODUCTION when a plane shear layer with a tangential velocity disconti-
nuity Au and density discontinuitydp is simultaneously
There is a continuing lively interest in unstable fluid in- subjected to a variable normal accelerata(t), the three
terfaces, both because of their intrinsic fascination and bebasic instabilities become intermingled. As long as the dis-
cause they provide a mechanism for rapidly mixing togetheturbances remain small, the resulting motion can be com-
two fluids that would otherwise remain separated. Such mixpletely described by means of a conventional linear stability
ing can be either desirable or undesirable depending on thenalysig1,2,8,9. For larger values ofi, however, the prob-
circumstances. The degree to which the two fluids are mixetem becomes nonlinear and can no longer be solved analyti-
together by an instability can be characterized by the halfeally. Approximations then become necessary, of which per-
width h(t) of the mixing layer as a function of the tinte  haps the simplest are models that take the form of heuristic
The instability is typically seeded, at least in theoreticalnonlinear generalizations of the linear results. Models of this
treatments, by introducing a small sinusoidal perturbation atype have recently been described for accelerated interfaces
t=0. As long as the perturbation remains small enough tdetween two incompressible fluids withu=0 (no KH in-
permit linearization, it remains sinusoidal, ahf(t) may be stability) in both planaf7] and spherical10] geometry. Our
identified with its amplitude. As the perturbation grows purpose here is to generalize the model of Réfto include
larger, the problem enters the nonlinear regime and the mixthe KH instability, as well as the effects of a slow uniform
ing layer becomes irregular and asymmetrical, with the penanisotropic compression or expansion of the mixing layer as
etration depth of the heavier fluid generally exceeding that o& whole. The linear stability analysis for this situation was
the lighter one. To preserve backward compatibility with ear-recently presented], and serves as a cornerstone for the
lier treatments, we shall adhere to the conventional definitiomlevelopment of the present nonlinear model. The resulting
of h as the visual penetration depth of the lighter fluid intogeneralized nonlinear model then encompasses all three of
the heavier one. It should be noted that negative valuds of the basic interfacial instabilites, either alone or in arbitrary
must be allowed in order to describe situations in which thecombinations, including a fully consistent treatment of com-
interface undergoes stable oscillations and the initial dispression effects. It also reduces to the correct linear stability
placement suffers periodic reversals in direction. When thigquation[9] in the linear regime.
occurs, the positive half-width of the mixing layer may be The previous model§7,10] were developed by the fol-
identified with|h|. lowing procedure. First, the kinetic energyof the system is
There are three classical interfacial instabilities, which areevaluated from the linearized potential flow solution for a
associated with the names of Rayleigh-TayiBT) [1-3],  single-mode perturbation of wavelength The resulting ex-
Richtmyer-Meshkov (RM) [4,5], and Kelvin-Helmholtz pression forT is then extended into the nonlinear regime by
(KH) [1,2]. In practical situations these instabilities are rarelymeans of a wavelength renormalization hypoth€®iRH),
encountered in pure form; they usually occur in various hy-whereby\ is replaced by an effective wavelength which is
brid combinations, of which an arbitrary variable accelera-postulated to be proportional to Finally, a nonlinear evo-
tion history [6,7] is of particular interest. More generally, lution equation foih is derived from the nonlinear expression
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for T by means of Lagrange’'s equations. The use ofnary agreement, together with the other special cases already
Lagrange’'s equations preserves the essential property of ediscussed, lends cause for optimism that the model will pro-
ergy conservatiorfin the absence of dissipatiprwhile the  duce reasonable results in more compliciated situations in-
WRH captures the essential self-similar scaling behavior thatolving simultaneous normal acceleration, transverse shear,
such mixing layers are expected to exhibit. It was shown irand compression.

Ref. [7] that the resulting simple evolution equation for

properly represents the known behavior of the RT and RM Il. KINETIC ENERGY EQUATION

special cases in both the linear and nonlinear regimes, and . . . . : :
produces solutions in good agreement with available experi- Our first task is to derive a suitable time evolution equa-

mental data for several different time-dependent variable act-'On for the kinetic energy of an inhomogeneous inviscid

celeration historie$6] fluid subjected to an externally imposed slow uniform but
The present development follows essentially the sam nisotropic compression or expansion. Such an equation can

procedure, but with one important difference: Lagrange’s e_derived from thg local momentum equation for the fluid,
equations cannot be used in the present context, bebaase which has the familiar form
no longer a proper generalized coordinate when#0.
(That is to say, the positions of all the Lagrangian fluid par-
ticles in the system can no longer in principle be expressed
as functions oh.) We therefore abandon Lagrange’s equa-
tions in favor of a suitable expression for the rate of changavherep andp are the local fluid density and pressure, re-
of the kinetic energy of the mixing layer. This expression isspectively, ands is a uniform external body force per unit
directly derived from the local momentum equation. mass. The fluid velocityu is taken to be of the fornu

The development proceeds along the following outline. In=D-r +U, wherer is the position vectorD is a symmetric
Sec. Il we derive a suitable expression for the rate of changdyadic which is constant in space, aNdU=0. ThusU is
of the kinetic energyK of a nonuniform inviscid fluid sub- the incompressible part of the velocity field, from which the
jected to an externally imposed uniform anisotropic com-externally imposed uniform compression/expansiorhas
pression or expansion. This expession is then specialized ipeen removed. It follows that-u=U:D=D, whereU is the
Sec. Il to the planar mixing layer of present interest, and theunit dyadic. ThusD is uniform in space, and this implies a
various quantities appearing therein are evaluated from theestriction to slow compression or expansion; i.e., values of
known linear potential flow solutiof®]. These quantities are D which are much smaller than the rate at which pressure is
then heuristically extended into the nonlinear regime byequilibrated by acoustic waves. Under these conditions, the
means of the WRH, as discussed above. The nonlinear modptessure field will be essentially uniform whés=G=0,
equation of motion fomh is derived in Sec. IV by requiring and it then follows from Eq(1) thatD must obey the con-
the resulting nonlinear expression fidrto obey the kinetic  dition
energy equation of Sec. Ill, with a decay term introduced to
represent the dissipation of kinetic energy into thermal en- D+D-D=0. 2)
ergy in the nonlinear regime. It is remarkable that the result-

ing generalized model contains no new constants or paranx supset of this condition was obtained by a somewhat dif-
eters associated with the KH instability; it merely involves ferent argument in the linear theofg].

the same two parameters as the previous mpdeiamely Taking the dot product ob) with Eq. (1), we obtain the
the WRH parametely and the dissipation parameterThese  |ocal kinetic energy equation
parameters are completely determined by pure incompress-
ible RT and RM experiments in the absence of sh&ar g9 /1

In Sec. V we examine the form and behavior of the model E(§p|u|z
in various special cases. In particular, we verify that the
present model properly reduces to the known linear evolu- +pU-G, (3)
tion equation foth [9] in the linear regime, and to the previ-

ous model of 7] in the absence of shear and compressionyhere use has been made of E2).and the continuity equa-
The present model thereby inherits all of the special casegon gp/at+ V- (pu)=0. The global kinetic energy equation
that the previous mod¢¥] successfully represented. We also js gptained by integrating E¢3) over a time-dependent vol-
examine the asymptotic behavior bfin the nonlinear re-  ymeV which is Lagrangian with respect to the compression
gime for a pure incompressible KH instability with no nor- ye|ocities, so that the surfac®of V moves with the local
mal acceleration. In this case the model predicts #hat yelocity D-r. The resulting expression combines with the

= 7| Ault, where the coefficieny reduces to 0.10 whep;  Reynolds transport theoref2] to yield
=p,, andb andc are taken to have the same values used to

match variable-acceleration experimental dﬁﬁ]. This is K=—2D:K+P-G+Kag, (4)
very close to the value o# inferred from experimental data

for a free shear laydrl1]. However, the significance of this h

agreement is somewhat uncertain, since there is no preci%"é ere

equivalence between spatially and temporally evolving shear

layers. More detailed comparisons with experimental data K:f drEpUU, (5)
are clearly required in any case. Nevertheless, this prelimi- 2

u +u-V
—+u-Vu
at

P =-Vp+pG, 1)

+V. +pUU:D=—V-(pU)

1
- 2
eVl




PRE 61 SIMPLE MODEL FOR MIXING AT ACCELERATED. .. 5341

K KU f ar 2ol © p1UT=—p1AU, poUS=prAu, (12)
v whereAu= ug— u(l) is the tangential velocity discontinuity at
the interface, ang,=p1p2/(p1+ p2).
P:f drpU, (7) We now consider the effect of introducing a small sinu-
v soidal perturbation of amplitudeinto the interface location,
1 so that the interface is now defined byr=hC, whereC
Ks: _J dA| p+ —p|U|2)U~nS, (8) = cps{k(t)-r] andk-n=0. Fluids 1 anq 2 now occupy the
s 2 regionsn-r<hC andn-r>hC, respectively. The time de-
pendence ok is necessary to allow for the change in wave-

andng is the outward unit normal t& Equation(4) is the  |ength due to the transverse compression, which is deter-
desired time evolution equation for the kinetic enelyf  mined by[9]

the incompressible part of the flow field. The teBnG rep-
resents the work done by the external body force, while the k=—D-k=—Dy-k. (13
term —2D:K represents the amplification of kinetic energy
by compression. The latter term is analogous {mdd work  For small h, the resulting potential flow fields;=V ¢;,
term, and to the similar terms that appear in the turbulenpressure distributiong;, and interface dynamics can be ana-
kinetic energy equation in compressible turbulence modelslytically determined to first order irh by a conventional
linear stability analysi§9]. We shall make use of these linear
Ill. ACCELERATED SHEAR LAYER WITH results to evaluate the various quantities in Ef.as func-
COMPRESSION tions ofh, k, D, and the other parameters of the problem. To
o , this end, we identify the volum¥ of Sec. Il with a slab of
We now proceed to specialize the preceding general fora5ss sectional area bounded by the plane surfacesr

mulation to the physical situation of present interest, namely, B .
an initially planar interface which separates two immiscible - £1<C and n-r=Zz,>0, where |Zi]>max(@m/kh), A

homogeneous fluids of different density and negligible sur-= (D —Dn).A due to the transverse compress[@, andZ;

face tension. The density of fluids uniform with the value ~=DnZi due to the normal compression. The massés
pi, and the unperturbed velocity field of fluidis uP = u® =piAlZi| are_of course conserved and hence are constant in
+D-r, Whereuio is uniform,uio. n=0, andn is the unit nor- t!me, SO thaﬂ\/li=0, which is easily verified by differentia-
mal to the original unperturbed interface pointing from fluid tion. _

1 into fluid 2. The velocity gradient tens@ satisfies the The quantitieX, 2D:K, P-n, andKg will be evaluated
conditions of the preceding section, including Eg), and based on the known linearized potential flow solut{@n.

has the forn{9] This is done by setting=p; andU=u;—D-r=u’+V ¢/ in

Egs. (5)—(7), where ¢/ is given by Eq.(15) of Ref. [9], i

=1 for n-r<hC, andi=2 for n-r>hC. SinceK is qua-
where D,=n-D-n and D,-n=0. SinceD is uniform in dratic inU, these integrals must be evaluated to second order

space, the fluid densitigs remain uniform within each fluid N h and/orh even to describe the linear regime. For this

D=D,nn+D;, 9

but depend upon time according to purpose it is essential to include the second-order effects of
the perturbation on the integration limits. Just as in Ref,
pi=—Dp;. (100  however, itis unnecessary to evaluate #heo second order,

since the linearized interface dynamics is completely deter-
Moreover, pressure equality at the unperturbed interface remined by the linear approximation to thé [9]. The re-
quires that the tangential velocitiex;‘,’ obey the conditions quired integrations are tedious but straightforward, and the
9] resulting second-order expressionsKor2D:K, andP-n are
given by
u’+D-ul=0. (12)

p : P12
The system is in zero gravity but is subjected to a normal K=Ko:U+ 2k A(h=Dyh)?= 4K

acceleratiora(t)n. Just as in the linear theof®], it is con-

venient to describe the system in a comoving accelerating —

Cartesian coordinate frame in which the unperturbed inter- 2D:K=2D:K,+ L A(D,+D,)(h—Dyh)2

face is stationary for alt. In this frame the system experi- 2k

ences an artificial external body force per unit mas&ef

—a(t)n, the unperturbed interface is defined byr=0

(with the understanding that the origin is located somewhere

on the interfacg and the unperturbed fluids 1 and 2 occupy 1

the regionsn- r<o andn_- r>0, respectively. It is also con- P.n=—=ApAh(h—D,h), (16)

venient to let the coordinate frame move parallel to the in- 2

terface with the velocity of the linear KH surface wayés _

These waves then become stationary in this system, and thighere  ZKo=MuSud+M,udud, 2p=pi+p,, Ap=p,

implies[9] —p1, T=AuAu, andk?D,=k-D-k.

A(kk:T)h?, (14

P12

+ i AKK: (D + D)T—4D-T]h?, (15
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We now consider the surface terlkrg. The surfaces-r isotropic, sinceAu defines a preferred tangential direction.
=Z; do not contribute to this term becauden=0 far from Indeed, during the early nonlinear stages of mixing, shear
the interface. But the lateral portions 8fdo not contribute layers are known to be dominated by large-scale coherent
either due to the fact that both andp are periodic in th&  structures aligned normal tau [11], and hence exhibit a
direction. [The periodicity ofU=u’+V ¢/ is evident from  high degree of tangential anisotropy. However, the degree to
Eq. (15) of Ref.[9], while the periodicity ofp follows, after ~ Which this anisotropy persists in the asymptotic late-time re-
a little algebra, from Eqs(9)—(11) and (16) of Ref. [9].] gime of present interest is not known and has been contro-

Thus there are no nonzero contributionsktg so that versial. In the absence of such information, we shall provi-
’ sionally assume that this anisotropy can be neglected for

KS: 0. (17) purposes of evaluatingkk ), which can then be regarded as
an isotropic average over all possible tangential directions. It

is easy to verify that the result of this averaging(l)

=3k?(U—nn). Thus we letkk=Kkok, when |h|<m\,,
The above expressions are based on the linearized flowherek, is the wave vector of the initial perturbation in the

field [9], so they clearly no longer strictly apply in the non- linear regime, which again depends on time according to Eq.

linear regime. We shall nevertheless extend them into thé€l3), and

nonlinear regime by means of the wavelength renormaliza- 1

tion hypothesis discussed in R§Y.], according to which\ _ T2

=27/k retains the valua ,=2m/k, for small|h| [wherek, ko= kk) Zk (U=nn), 19

now depends on time according to Ed.3)] but becomes )

asymptotically proportional tth| for large|h|. The rationale  when|h|>m\ in the nonlinear regime. In the latter cage,

for the WRH was discussed in detail in R€T], and hence s of course no longer determined by E3), butk will not

will not be repeated here. As emphasized in R&l, the  appear by itself; what is neededdskk )/dt, which is deter-
WRH does not lead to unique results in and of itself, and thenined by Eqs(18) and(19).

manner in which it is introduced is crucial. By introducing  As discussed in Ref7], it is also necessary to allow for
this relation into Eqs(15)—(17) and using Eq(4) to deter-  energy dissipation in the nonlinear regime. This can be done

mine the time evolution oh(t), we automatically preserve py introducing a suitable sink term into E@f) to obtain
the essential property of energy conservation, just as was

done in Ref[7] by the use of Lagrange’s equations. K=—-2D:K—a(t)P-n—d, (20)
We shall takex to have the same form as fii], namely,

IV. DERIVATION OF THE NONLINEAR MODEL

) where use has been made of E4j7). Equation(20) is our
T _ final kinetic energy equation for the mixing layer. We shall
—=maxX(\q,b|h|+(1—mb)\y), 18 Lo S :
k (ho,blh[+( o) (18 assume that the dissipation rate of kinetic energy in the
_ _ nonlinear regime is controlled by the large scale motions,
whereho(t) =2m/kq(t) is the time-dependent wavelength of and is consequently independent of molecular viscosity, just

the initial perturbation in the linear regime, ant~-1 is the as itis in turbu|encél3]_ In the absence of shear and com-
value of|h|/\ at which the transition from linear to nonlin- pression, this implies thatb must be of the form®

ear behaviors occurs. As emphasized in Re&f, however,
this is a primitive and highly oversimplified transition rule
which should not be expected to be highly accurate, an
more realistic alternatives should also be explored. Wiyen
is very small, however, the transition to the nonlinear regim
occurs so quickly that the detailed manner in which it doe
so becomes relatively unimportant.

A=

=cAp|h|® [7]. In the present context, howeven, is no
longer the only velocity in the problem, so the formd®fcan

o longer be determined by dimensional considerations
alone. In this situation, it seems reasonable to ldasm the
Q/elocity associated with the rate at which material masses are
Smixed together by the instability, so that no dissipation oc-
curs in the absence of true mixing. The mass of fluichich

In.thgtprgsentt. contet I?I a vgtctor, angi |td|s r_1rehc.:esas_aryt.to has moved across some Lagrangian adeaf the original
specify its Irection as well as Its magnitude. 1his GiréClion; o 4o by timet is given by m;= yp;Ah, where vy is of
becomes ambiguous in the nonlinear regime, where the ini-

. I : order unity and takes the valuerlin the linear regim¢9].

tial perturbation is presumably forgotten. In the nonlinear : . }
regime, however\ becomes an effective wavelength which 't follows that m;=(m;/h)(h—Dgh), so that the velocity
no longer literally represents the wavelength of a singleassociated with the mixing of material masseshis-D,h).
mode sinusoidal disturbance. The physical interpretation ofAs previously discussed, the second term subtracts out the
\ in this regime is somewhat unclear; it presumably reprepurely geometric effects of the compressi@j.] We there-
sents an appropriately weighted average over the unknowfore replaceh in the previous expression fob by (h
statistical distribution of length scales occurring in the mix- —Dh) to obtain

ing layer. This interpretation then implies that the vedtor o

should not be regarded as having a unique but unknown d=cAp|h—Dyh|°. (21
direction in the nonlinear regime, but rather as having some

statistical distribution of tangential directions. It then follows Since this form was obtained from inherently nonlinear con-
that the tensokk appearing in Eqs(15) and(16) should be siderations® should be switched off in the linear regime by
interpreted as an appropriate average over the latter distribsettingc=0 for |h| <m\,,.

tion, which we denote bykk). This distribution need not be As shown in Ref[7], the coefficientd andc are given by
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A 22 i Se—g| T2Y) ZWC) D hh=0. (6
“az-0) @2 2B ) e wlhih=0- 28
2—-30 For h,h>0, Eq.(26) admits the asymptotic solution
c=—7—-, (23
4da(2—0)
h=7|Ault, (27)
whereq is the coefficient in the incompressible nonlinear RTWhere
growth law[14,15 h=aAat?, andé is the time exponent in
the incompressible nonlinear RM growth la6] h~t?. 5 Jopa
Both @ and @ may be measured experimentally, so the values a(2=0) Vp1pa 28)

of b andc may be regarded as known for present purposes. 7 VO(1—-6) p1tp2’
We are now finally in a position to derive the model evo-
lution equation foh by combining Eqs(14)—(16) and(20).  Equation(27) predicts that the mixing layer grows linearly in
We thereby obtain time with a rate proportional tfAul|, in agreement with el-
ementary dimensional considerations. Equati®2® further
. : 1 . predicts the value of the dimensionless coefficigrih terms
(h=Dyh) a(h_ Dnh) + ﬂ(Dkk_ k)(h—Dph)—Aka(t)h of the density ratio and the parametersand 6 appearing in
the corresponding growth laws for pure RT and RM insta-
bilities, respectively{7]. The predicted dependence on den-
sity ratio is the same as that previously proposed on heuristic
grounds by Youngg$17]. The predicted dependence an
and 6 appears to be new and is somewhat remarkable, as it
) - implies that the nonlinear growth behavior of a pure KH
number,B=p1p,/(p1+p2)°=p12/(2p), instability may be completely determined by performing
L g . pure RT and RM experiments, which might at first seem
_ . : 2 independent and unrelated. This prediction is subject to ex-
A= EBT a(kkHZD' kk= E(k+ Dkk)kk}h (29 perimental verification. To this end, it is of interest to com-
pare the value of; predicted by Eq(28) with that inferred
and use has been made of E(, (10), and(11). Equation ~ from experimental data on the growth rates of free shear
(24) is the fundamental dynamical evolution equation of thelayers[11].
model. It is a second-order nonlinear ordinary differential Unfortunately, temporally evolving shear layers corre-
equation which determindﬂ;(t) for an arbitrary gi\/era(t)' sponding to a pure KH instability are difficult to produce in
Au, andD. Although Egs.(2) and (11) imply a particular ~ the laboratory. For this reason, most experiments are per-
time dependence for the latter two quantities, these restridormed on spatially evolving shear layers occurring down-
tions are not essential for reasons discussed in [Réfso stream of a splitter plate that separates two coflowing
that Eq.(24) should still apply for anyAu andD that vary ~ streamg11]. There is no precise equivalence between tem-

slowly in time. Similar considerations clearly apply to Eq. Porally and spatially evolving shear layers, so comparisons
(9). between them are subject to some uncertainty. However, it is

widely believed that such comparisons are nevertheless
meaningful, as it is clear that the two situations exhibit close
similarities when an appropriate transformation between
space and time is performed. The obvious transformation is

Xx=ut, wherex is the downstream spatial coordinate ani

-2 Equaton (24 then recuces, whew—0, o the S0 SPPOPrle mean dtubance velocy, i presu:
known linear evolution equation fdr, which is given by Eqg. y 9N 9 gz

(22) of Ref.[9]. The model therefore behaves correctly in theth® two streams, i.ey= wu; +(1— w)u,. However, the de-
linear regime. pendence ofo upon the density ratip,/p, is unclear. Ifu

In the case where shear and compression are both absewgre the same as the linear KH wave speed, which seems
Au=D=0 and Eq.(24) reduces, after a little algebra, to Eq. intuitively reasonable, then we would havwe=p,/(p;
(13) of Ref.[7]. Equation(24) thereby inherits the full be- +p,), but this identification is not supported by direct nu-
havior of the previous mod¢l], which was shown to cap- merical simulation$17]. When the densities are equal, how-
ture the known behavior of the pure RT and RM instabilitiesever, the valuev=1/2 is required by symmetry, thereby re-
in both the linear and nonlinear regimes, and to agree reawmoving this source of uncertainty. We shall therefore restrict
sonably well with available experimental data for several dif-attention to the case, /p,=1, in which the full visual width
ferent variable acceleration historigg. i, of the mixing layer for largex was experimentally found

We now proceed to examine the behavior of the model ing pe 5vi2=0.1un|x/U[11]. This width corresponds tot2
the case of a pure incompressible KH instability in the non-, g replacingx by Ut then givesh=0.098Ault. Our best
linear regime, wher@(t)=D=0, N=2n/k=blh|, andk/k  experimental estimate of; for p,/p,=1 is thereforey
= —h/h. Equations(24) and(25) then combine to give =0.095.

—B(kk:T)h+ck|h—Dnh|(h—Dnh)}=A, (24)

where A=(p,—p1)/(pa+p1)=Apl(2p) is the Atwood

V. SPECIAL CASES

In the linear regime, Eq(13) implies thatk= — Dk, and
it then follows immediately thatA=0 and ©k—k)
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To obtain a corresponding theoretical estimate from Eqwith experimental data for several different variable accel-
(28), we must choose values for the RT/RM parameters eration historie$6,7]. Using the same values for the RT and
and 6. We shall use the values=0.061 andd=0.37 deter- RM scaling parameters and 6, the present model was also
mined in the variable-acceleration experiments of Dimonteshown to provide an accurate description of the nonlinear
and Schneidef6]. These values combine with E(R8) for  growth of a free shear layer between two fluids of the same
p1=p- to yield =0.103, in very close agreement with the density. Thus the model correctly represents both the linear
value inferred fromd,;, for the free shear layer. This is and nonlinear mixing behavior of unstable fluid interfaces in
highly encouraging, especially since the model contains n@ wide variety of special cases. It is hoped that this model
new or additional adjustable parameters associated with thaill provide a useful tool for making predictive estimates of
KH instability. However, this agreement may to some extenimixing at unstable fluid interfaces where the canonical RT,
be fortuitous in view of the various uncertainties already dis-RM, and KH instabilities occur in various combinations in
cussed, particularlya) the lack of equivalence between the the presence of anisotropic compression and/or expansion.
temporally and spatially evolving shear layers, ghgour  Of course, a more definitive assessment of the accuracy and
use of an isotropic average over all tangential directions eveutility of the model will require more detailed comparisons
though the shear layer exhibits highly anisotropic large-scalavith data from experiments and/or three-dimensional direct
structures. In spite of these uncertainties, however, it is cleanumerical simulations. Such comparisons will hopefully be
that the present generalized model provides a reasonably fibrthcoming, and will most likely identify the need for fur-
not remarkably accurate representation of known interfacialhner modifications and improvements. In particular, the
instability behavior in a wide variety of special cases, andmodel in its present form, like its predeces$@}, is espe-
this lends some encouragement to the hope that it will coneially simplistic in its treatment of demixing effects and the
tinue to predict reasonable behavior in more complicatedransition between the linear and nonlinear regimes. Other
situations in which the features of these cases occur simultalesirable enhancements would include the capability to rep-
neously in various combinations. resent ablation, multimode initial perturbations, and different

compression rates in the two fluids. However, there are pre-
sumably limits to how much physics can be reasonably ac-
VI. CONCLUSION commodated within simple models of this type. These limits

We have presented a simple model, embodied in &4,  are not yet clear, but may be expected to reveal themselves in

and (25), for predicting the half-widthh(t) of the mixing due course.
layer at an accelerated fluid interface with shear and com-
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