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Simple model for mixing at accelerated fluid interfaces with shear and compression

John D. Ramshaw
Lawrence Livermore National Laboratory, University of California, P. O. Box 808, L-097, Livermore, California 94551

~Received 17 December 1999!

A simple model was recently described for predicting linear and nonlinear mixing at an unstable planar
interface between two fluids of different density subjected to an arbitrary time-dependent variable acceleration
history @J. D. Ramshaw, Phys. Rev. E58, 5834~1998!#. Here we generalize this model to include the Kelvin-
Helmholtz ~KH! instability resulting from a tangential velocity discontinuityDu, as well as the effects of a
uniform anisotropic compression or expansion of the mixing layer as a whole. The model consists of a
second-order nonlinear ordinary differential equation of motion for the half-widthh of the mixing layer. This
equation is derived by combining the wavelength renormalization hypothesis used in the earlier model with a
suitable expression for the rate of change of the kinetic energy of the mixing layer. The resulting generalized
model contains no additional free parameters, and reduces to the previous model in the absence of tangential
velocities and compression. It also reduces in the linear regime to the correct linearized stability equation for
an accelerated shear layer with compression@J. D. Ramshaw, Phys. Rev. E61, 1486 ~2000!#. For a pure
incompressible KH instability in the nonlinear regime, the model predicts thath5huDuut, whereh5@a(2
2u)/Au(12u)#Ar1r2/(r11r2), anda andu are parameters appearing in the nonlinear Rayleigh-Taylor and
Richtmyer-Meshkov growth laws. For equal densities and the same parameter values previously used to match
variable-acceleration experimental data, we findh50.10, in close agreement with experimental data for free
shear layers.

PACS number~s!: 47.20.Bp, 47.20.Ft, 47.20.Ma, 47.27.2i
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I. INTRODUCTION

There is a continuing lively interest in unstable fluid i
terfaces, both because of their intrinsic fascination and
cause they provide a mechanism for rapidly mixing toget
two fluids that would otherwise remain separated. Such m
ing can be either desirable or undesirable depending on
circumstances. The degree to which the two fluids are mi
together by an instability can be characterized by the h
width h(t) of the mixing layer as a function of the timet.
The instability is typically seeded, at least in theoretic
treatments, by introducing a small sinusoidal perturbation
t50. As long as the perturbation remains small enough
permit linearization, it remains sinusoidal, andh(t) may be
identified with its amplitude. As the perturbation grow
larger, the problem enters the nonlinear regime and the m
ing layer becomes irregular and asymmetrical, with the p
etration depth of the heavier fluid generally exceeding tha
the lighter one. To preserve backward compatibility with e
lier treatments, we shall adhere to the conventional defini
of h as the visual penetration depth of the lighter fluid in
the heavier one. It should be noted that negative valuesh
must be allowed in order to describe situations in which
interface undergoes stable oscillations and the initial d
placement suffers periodic reversals in direction. When
occurs, the positive half-width of the mixing layer may b
identified with uhu.

There are three classical interfacial instabilities, which
associated with the names of Rayleigh-Taylor~RT! @1–3#,
Richtmyer-Meshkov ~RM! @4,5#, and Kelvin-Helmholtz
~KH! @1,2#. In practical situations these instabilities are rare
encountered in pure form; they usually occur in various
brid combinations, of which an arbitrary variable accele
tion history @6,7# is of particular interest. More generally
PRE 611063-651X/2000/61~5!/5339~6!/$15.00
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when a plane shear layer with a tangential velocity disco
nuity Du and density discontinuityDr is simultaneously
subjected to a variable normal accelerationa(t), the three
basic instabilities become intermingled. As long as the d
turbances remain small, the resulting motion can be co
pletely described by means of a conventional linear stab
analysis@1,2,8,9#. For larger values ofh, however, the prob-
lem becomes nonlinear and can no longer be solved ana
cally. Approximations then become necessary, of which p
haps the simplest are models that take the form of heur
nonlinear generalizations of the linear results. Models of t
type have recently been described for accelerated interf
between two incompressible fluids withDu50 ~no KH in-
stability! in both planar@7# and spherical@10# geometry. Our
purpose here is to generalize the model of Ref.@7# to include
the KH instability, as well as the effects of a slow unifor
anisotropic compression or expansion of the mixing layer
a whole. The linear stability analysis for this situation w
recently presented@9#, and serves as a cornerstone for t
development of the present nonlinear model. The resul
generalized nonlinear model then encompasses all thre
the basic interfacial instabilites, either alone or in arbitra
combinations, including a fully consistent treatment of co
pression effects. It also reduces to the correct linear stab
equation@9# in the linear regime.

The previous models@7,10# were developed by the fol
lowing procedure. First, the kinetic energyT of the system is
evaluated from the linearized potential flow solution for
single-mode perturbation of wavelengthl. The resulting ex-
pression forT is then extended into the nonlinear regime
means of a wavelength renormalization hypothesis~WRH!,
wherebyl is replaced by an effective wavelength which
postulated to be proportional toh. Finally, a nonlinear evo-
lution equation forh is derived from the nonlinear expressio
5339 ©2000 The American Physical Society
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5340 PRE 61JOHN D. RAMSHAW
for T by means of Lagrange’s equations. The use
Lagrange’s equations preserves the essential property o
ergy conservation~in the absence of dissipation!, while the
WRH captures the essential self-similar scaling behavior
such mixing layers are expected to exhibit. It was shown
Ref. @7# that the resulting simple evolution equation forh
properly represents the known behavior of the RT and R
special cases in both the linear and nonlinear regimes,
produces solutions in good agreement with available exp
mental data for several different time-dependent variable
celeration histories@6#.

The present development follows essentially the sa
procedure, but with one important difference: Lagrang
equations cannot be used in the present context, becaush is
no longer a proper generalized coordinate whenDuÞ0.
~That is to say, the positions of all the Lagrangian fluid p
ticles in the system can no longer in principle be expres
as functions ofh.) We therefore abandon Lagrange’s equ
tions in favor of a suitable expression for the rate of chan
of the kinetic energy of the mixing layer. This expression
directly derived from the local momentum equation.

The development proceeds along the following outline.
Sec. II we derive a suitable expression for the rate of cha
of the kinetic energyK of a nonuniform inviscid fluid sub-
jected to an externally imposed uniform anisotropic co
pression or expansion. This expession is then specialize
Sec. III to the planar mixing layer of present interest, and
various quantities appearing therein are evaluated from
known linear potential flow solution@9#. These quantities are
then heuristically extended into the nonlinear regime
means of the WRH, as discussed above. The nonlinear m
equation of motion forh is derived in Sec. IV by requiring
the resulting nonlinear expression forK to obey the kinetic
energy equation of Sec. III, with a decay term introduced
represent the dissipation of kinetic energy into thermal
ergy in the nonlinear regime. It is remarkable that the res
ing generalized model contains no new constants or par
eters associated with the KH instability; it merely involv
the same two parameters as the previous model@7#, namely
the WRH parameterb and the dissipation parameterc. These
parameters are completely determined by pure incompr
ible RT and RM experiments in the absence of shear@7#.

In Sec. V we examine the form and behavior of the mo
in various special cases. In particular, we verify that
present model properly reduces to the known linear evo
tion equation forh @9# in the linear regime, and to the prev
ous model of@7# in the absence of shear and compressi
The present model thereby inherits all of the special ca
that the previous model@7# successfully represented. We al
examine the asymptotic behavior ofh in the nonlinear re-
gime for a pure incompressible KH instability with no no
mal acceleration. In this case the model predicts thah
5huDuut, where the coefficienth reduces to 0.10 whenr1
5r2, andb andc are taken to have the same values used
match variable-acceleration experimental data@6,7#. This is
very close to the value ofh inferred from experimental dat
for a free shear layer@11#. However, the significance of thi
agreement is somewhat uncertain, since there is no pre
equivalence between spatially and temporally evolving sh
layers. More detailed comparisons with experimental d
are clearly required in any case. Nevertheless, this prel
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nary agreement, together with the other special cases alr
discussed, lends cause for optimism that the model will p
duce reasonable results in more compliciated situations
volving simultaneous normal acceleration, transverse sh
and compression.

II. KINETIC ENERGY EQUATION

Our first task is to derive a suitable time evolution equ
tion for the kinetic energy of an inhomogeneous invisc
fluid subjected to an externally imposed slow uniform b
anisotropic compression or expansion. Such an equation
be derived from the local momentum equation for the flu
which has the familiar form

rS ]u

]t
1u•¹uD52¹p1rG, ~1!

wherer and p are the local fluid density and pressure, r
spectively, andG is a uniform external body force per un
mass. The fluid velocityu is taken to be of the formu
5D•r1U, wherer is the position vector,D is a symmetric
dyadic which is constant in space, and¹•U50. ThusU is
the incompressible part of the velocity field, from which th
externally imposed uniform compression/expansionD has
been removed. It follows that¹•u5U:D[D, whereU is the
unit dyadic. ThusD is uniform in space, and this implies
restriction to slow compression or expansion; i.e., values
D which are much smaller than the rate at which pressur
equilibrated by acoustic waves. Under these conditions,
pressure field will be essentially uniform whenU5G50,
and it then follows from Eq.~1! that D must obey the con-
dition

Ḋ1D•D50. ~2!

A subset of this condition was obtained by a somewhat
ferent argument in the linear theory@9#.

Taking the dot product ofU with Eq. ~1!, we obtain the
local kinetic energy equation

]

]t S 1

2
ruUu2D1¹•S 1

2
ruUu2uD1rUU:D52¹•~pU!

1rU•G, ~3!

where use has been made of Eq.~2! and the continuity equa
tion ]r/]t1¹•(ru)50. The global kinetic energy equatio
is obtained by integrating Eq.~3! over a time-dependent vol
umeV which is Lagrangian with respect to the compress
velocities, so that the surfaceS of V moves with the local
velocity D•r . The resulting expression combines with th
Reynolds transport theorem@12# to yield

K̇522D:K1P•G1K̇S , ~4!

where

K5E
V
dr

1

2
rUU, ~5!
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K5K:U5E
V
dr

1

2
ruUu2, ~6!

P5E
V
drrU, ~7!

K̇S52E
S
dAS p1

1

2
ruUu2DU•nS , ~8!

and nS is the outward unit normal toS. Equation~4! is the
desired time evolution equation for the kinetic energyK of
the incompressible part of the flow field. The termP•G rep-
resents the work done by the external body force, while
term 22D:K represents the amplification of kinetic ener
by compression. The latter term is analogous to apdV work
term, and to the similar terms that appear in the turbul
kinetic energy equation in compressible turbulence mode

III. ACCELERATED SHEAR LAYER WITH
COMPRESSION

We now proceed to specialize the preceding general
mulation to the physical situation of present interest, nam
an initially planar interface which separates two immiscib
homogeneous fluids of different density and negligible s
face tension. The density of fluidi is uniform with the value
r i , and the unperturbed velocity field of fluidi is ui

D5ui
0

1D•r , whereui
0 is uniform,ui

0
•n50, andn is the unit nor-

mal to the original unperturbed interface pointing from flu
1 into fluid 2. The velocity gradient tensorD satisfies the
conditions of the preceding section, including Eq.~2!, and
has the form@9#

D5Dnnn1Dt , ~9!

where Dn5n•D•n and Dt•n50. Since D is uniform in
space, the fluid densitiesr i remain uniform within each fluid
but depend upon time according to

ṙ i52Dr i . ~10!

Moreover, pressure equality at the unperturbed interface
quires that the tangential velocitiesui

0 obey the conditions
@9#

u̇i
01D•ui

050. ~11!

The system is in zero gravity but is subjected to a norm
accelerationa(t)n. Just as in the linear theory@9#, it is con-
venient to describe the system in a comoving accelera
Cartesian coordinate frame in which the unperturbed in
face is stationary for allt. In this frame the system exper
ences an artificial external body force per unit mass ofG5
2a(t)n, the unperturbed interface is defined byn•r50
~with the understanding that the origin is located somewh
on the interface!, and the unperturbed fluids 1 and 2 occu
the regionsn•r,0 andn•r.0, respectively. It is also con
venient to let the coordinate frame move parallel to the
terface with the velocity of the linear KH surface waves@9#.
These waves then become stationary in this system, and
implies @9#
e

t
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r1u1
052r12Du, r2u2

05r12Du, ~12!

whereDu5u2
02u1

0 is the tangential velocity discontinuity a
the interface, andr125r1r2 /(r11r2).

We now consider the effect of introducing a small sin
soidal perturbation of amplitudeh into the interface location,
so that the interface is now defined byn•r5hC, whereC
5 cos@k(t)•r # andk•n50. Fluids 1 and 2 now occupy th
regionsn•r,hC and n•r.hC, respectively. The time de
pendence ofk is necessary to allow for the change in wav
length due to the transverse compression, which is de
mined by@9#

k̇52D•k52Dt•k. ~13!

For small h, the resulting potential flow fieldsui5¹f i ,
pressure distributionspi , and interface dynamics can be an
lytically determined to first order inh by a conventional
linear stability analysis@9#. We shall make use of these linea
results to evaluate the various quantities in Eq.~4! as func-
tions ofh, k, D, and the other parameters of the problem.
this end, we identify the volumeV of Sec. II with a slab of
cross-sectional areaA bounded by the plane surfacesn•r
5Z1,0 and n•r5Z2.0, where uZi u@max(2p/k,h), Ȧ
5(D2Dn)A due to the transverse compression@9#, and Żi
5DnZi due to the normal compression. The massesMi
5r iAuZi u are of course conserved and hence are constan
time, so thatṀ i50, which is easily verified by differentia
tion.

The quantitiesK, 2D:K, P•n, and K̇S will be evaluated
based on the known linearized potential flow solution@9#.
This is done by settingr5r i andU5ui2D•r5ui

01¹f i8 in
Eqs. ~5!–~7!, wheref i8 is given by Eq.~15! of Ref. @9#, i
51 for n•r,hC, and i 52 for n•r.hC. SinceK is qua-
dratic inU, these integrals must be evaluated to second o
in h and/or ḣ even to describe the linear regime. For th
purpose it is essential to include the second-order effect
the perturbation on the integration limits. Just as in Ref.@7#,
however, it is unnecessary to evaluate thef i to second order,
since the linearized interface dynamics is completely de
mined by the linear approximation to thef i @9#. The re-
quired integrations are tedious but straightforward, and
resulting second-order expressions forK, 2D:K, andP•n are
given by

K5K0 :U1
r̄

2k
A~ ḣ2Dnh!22

r12

4k
A~kk :T!h2, ~14!

2D:K52D:K01
r̄

2k
A~Dn1Dk!~ ḣ2Dnh!2

1
r12

4k
Akk :@~Dn1Dk!T24D•T#h2, ~15!

P•n52
1

2
DrAh~ ḣ2Dnh!, ~16!

where 2K05M1u1
0u1

01M2u2
0u2

0, 2r̄5r11r2 , Dr5r2

2r1 , T5DuDu, andk2Dk5k•D•k.
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5342 PRE 61JOHN D. RAMSHAW
We now consider the surface termK̇S . The surfacesn•r
5Zi do not contribute to this term becauseU•n50 far from
the interface. But the lateral portions ofS do not contribute
either due to the fact that bothU andp are periodic in thek
direction. @The periodicity ofU5ui

01¹f i8 is evident from
Eq. ~15! of Ref. @9#, while the periodicity ofp follows, after
a little algebra, from Eqs.~9!–~11! and ~16! of Ref. @9#.#
Thus there are no nonzero contributions toK̇S , so that

K̇S50. ~17!

IV. DERIVATION OF THE NONLINEAR MODEL

The above expressions are based on the linearized
field @9#, so they clearly no longer strictly apply in the no
linear regime. We shall nevertheless extend them into
nonlinear regime by means of the wavelength renormal
tion hypothesis discussed in Ref.@7#, according to whichl
52p/k retains the valuel052p/k0 for small uhu @wherek0
now depends on time according to Eq.~13!# but becomes
asymptotically proportional touhu for largeuhu. The rationale
for the WRH was discussed in detail in Ref.@7#, and hence
will not be repeated here. As emphasized in Ref.@7#, the
WRH does not lead to unique results in and of itself, and
manner in which it is introduced is crucial. By introducin
this relation into Eqs.~15!–~17! and using Eq.~4! to deter-
mine the time evolution ofh(t), we automatically preserve
the essential property of energy conservation, just as
done in Ref.@7# by the use of Lagrange’s equations.

We shall takel to have the same form as in@7#, namely,

l5
2p

k
5max„l0 ,buhu1~12mb!l0…, ~18!

wherel0(t)52p/k0(t) is the time-dependent wavelength
the initial perturbation in the linear regime, andm;1 is the
value ofuhu/l0 at which the transition from linear to nonlin
ear behaviors occurs. As emphasized in Ref.@7#, however,
this is a primitive and highly oversimplified transition ru
which should not be expected to be highly accurate,
more realistic alternatives should also be explored. Whenl0
is very small, however, the transition to the nonlinear regi
occurs so quickly that the detailed manner in which it do
so becomes relatively unimportant.

In the present contextk is a vector, and it is necessary
specify its direction as well as its magnitude. This directi
becomes ambiguous in the nonlinear regime, where the
tial perturbation is presumably forgotten. In the nonline
regime, however,l becomes an effective wavelength whic
no longer literally represents the wavelength of a sing
mode sinusoidal disturbance. The physical interpretation
l in this regime is somewhat unclear; it presumably rep
sents an appropriately weighted average over the unkn
statistical distribution of length scales occurring in the m
ing layer. This interpretation then implies that the vectork
should not be regarded as having a unique but unkno
direction in the nonlinear regime, but rather as having so
statistical distribution of tangential directions. It then follow
that the tensorkk appearing in Eqs.~15! and~16! should be
interpreted as an appropriate average over the latter dist
tion, which we denote bŷkk &. This distribution need not be
w
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isotropic, sinceDu defines a preferred tangential directio
Indeed, during the early nonlinear stages of mixing, sh
layers are known to be dominated by large-scale cohe
structures aligned normal toDu @11#, and hence exhibit a
high degree of tangential anisotropy. However, the degre
which this anisotropy persists in the asymptotic late-time
gime of present interest is not known and has been con
versial. In the absence of such information, we shall pro
sionally assume that this anisotropy can be neglected
purposes of evaluatinĝkk &, which can then be regarded a
an isotropic average over all possible tangential directions
is easy to verify that the result of this averaging is^kk &
5 1

2 k2(U2nn). Thus we let kk5k0k0 when uhu,ml0,
wherek0 is the wave vector of the initial perturbation in th
linear regime, which again depends on time according to
~13!, and

kk5^kk &5
1

2
k2~U2nn!, ~19!

whenuhu.ml0 in the nonlinear regime. In the latter case,k̇
is of course no longer determined by Eq.~13!, but k̇ will not
appear by itself; what is needed isd^kk &/dt, which is deter-
mined by Eqs.~18! and ~19!.

As discussed in Ref.@7#, it is also necessary to allow fo
energy dissipation in the nonlinear regime. This can be d
by introducing a suitable sink term into Eq.~4! to obtain

K̇522D:K2a~ t !P•n2F, ~20!

where use has been made of Eq.~17!. Equation~20! is our
final kinetic energy equation for the mixing layer. We sh
assume that the dissipation rateF of kinetic energy in the
nonlinear regime is controlled by the large scale motio
and is consequently independent of molecular viscosity,
as it is in turbulence@13#. In the absence of shear and com
pression, this implies thatF must be of the formF

5cAr̄uḣu3 @7#. In the present context, however,ḣ is no
longer the only velocity in the problem, so the form ofF can
no longer be determined by dimensional considerati
alone. In this situation, it seems reasonable to baseF on the
velocity associated with the rate at which material masses
mixed together by the instability, so that no dissipation o
curs in the absence of true mixing. The mass of fluidi which
has moved across some Lagrangian areaA of the original
interface by timet is given bymi5gr iAh, whereg is of
order unity and takes the value 1/p in the linear regime@9#.
It follows that ṁi5(mi /h)(ḣ2Dnh), so that the velocity
associated with the mixing of material masses is (ḣ2Dnh).
@As previously discussed, the second term subtracts out
purely geometric effects of the compression@9#.# We there-
fore replaceḣ in the previous expression forF by (ḣ
2Dnh) to obtain

F5cAr̄uḣ2Dnhu3. ~21!

Since this form was obtained from inherently nonlinear co
siderations,F should be switched off in the linear regime b
settingc50 for uhu,ml0.

As shown in Ref.@7#, the coefficientsb andc are given by
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b5
pu

a~22u!
, ~22!

c5
223u

4a~22u!
, ~23!

wherea is the coefficient in the incompressible nonlinear R
growth law@14,15# h5aAat2, andu is the time exponent in
the incompressible nonlinear RM growth law@16# h;tu.
Both a andu may be measured experimentally, so the valu
of b andc may be regarded as known for present purpos

We are now finally in a position to derive the model ev
lution equation forh by combining Eqs.~14!–~16! and~20!.
We thereby obtain

~ ḣ2Dnh!F d

dt
~ ḣ2Dnh!1

1

2k
~Dkk2 k̇!~ ḣ2Dnh!2Aka~ t !h

2B~kk :T!h1ckuḣ2Dnhu~ ḣ2Dnh!G5L, ~24!

where A5(r22r1)/(r21r1)5Dr/(2r̄) is the Atwood
number,B5r1r2 /(r11r2)25r12/(2r̄),

L5
1

2
BT:F d

dt
~kk !12D•kk2

1

k
~ k̇1Dkk!kk Gh2, ~25!

and use has been made of Eqs.~2!, ~10!, and~11!. Equation
~24! is the fundamental dynamical evolution equation of t
model. It is a second-order nonlinear ordinary different
equation which determinesh(t) for an arbitrary givena(t),
Du, and D. Although Eqs.~2! and ~11! imply a particular
time dependence for the latter two quantities, these res
tions are not essential for reasons discussed in Ref.@9#, so
that Eq.~24! should still apply for anyDu andD that vary
slowly in time. Similar considerations clearly apply to E
~9!.

V. SPECIAL CASES

In the linear regime, Eq.~13! implies thatk̇52Dkk, and
it then follows immediately thatL50 and (Dkk2 k̇)
52Dkk. Equation ~24! then reduces, whenc50, to the
known linear evolution equation forh, which is given by Eq.
~22! of Ref. @9#. The model therefore behaves correctly in t
linear regime.

In the case where shear and compression are both ab
Du5D50 and Eq.~24! reduces, after a little algebra, to E
~13! of Ref. @7#. Equation~24! thereby inherits the full be-
havior of the previous model@7#, which was shown to cap
ture the known behavior of the pure RT and RM instabilit
in both the linear and nonlinear regimes, and to agree
sonably well with available experimental data for several d
ferent variable acceleration histories@6#.

We now proceed to examine the behavior of the mode
the case of a pure incompressible KH instability in the no
linear regime, wherea(t)5D50, l52p/k5buhu, and k̇/k
52ḣ/h. Equations~24! and ~25! then combine to give
s
s.

l

c-

nt,

a-
-

n
-

hḧ1
1

2
ḣ22BS pDu

b D 2

1S 2pc

b D h

uhu
uḣuḣ50. ~26!

For h,ḣ.0, Eq. ~26! admits the asymptotic solution

h5huDuut, ~27!

where

h5
a~22u!

Au~12u!

Ar1r2

r11r2
. ~28!

Equation~27! predicts that the mixing layer grows linearly i
time with a rate proportional touDuu, in agreement with el-
ementary dimensional considerations. Equation~28! further
predicts the value of the dimensionless coefficienth in terms
of the density ratio and the parametersa andu appearing in
the corresponding growth laws for pure RT and RM ins
bilities, respectively@7#. The predicted dependence on de
sity ratio is the same as that previously proposed on heur
grounds by Youngs@17#. The predicted dependence ona
andu appears to be new and is somewhat remarkable, a
implies that the nonlinear growth behavior of a pure K
instability may be completely determined by performin
pure RT and RM experiments, which might at first see
independent and unrelated. This prediction is subject to
perimental verification. To this end, it is of interest to com
pare the value ofh predicted by Eq.~28! with that inferred
from experimental data on the growth rates of free sh
layers@11#.

Unfortunately, temporally evolving shear layers corr
sponding to a pure KH instability are difficult to produce
the laboratory. For this reason, most experiments are
formed on spatially evolving shear layers occurring dow
stream of a splitter plate that separates two coflow
streams@11#. There is no precise equivalence between te
porally and spatially evolving shear layers, so comparis
between them are subject to some uncertainty. However,
widely believed that such comparisons are neverthe
meaningful, as it is clear that the two situations exhibit clo
similarities when an appropriate transformation betwe
space and time is performed. The obvious transformatio
x5ūt, wherex is the downstream spatial coordinate andū is
some appropriate mean disturbance velocity, which pres
ably must be a weighted average of the velocitiesu1 ,u2 of
the two streams, i.e.,ū5vu11(12v)u2. However, the de-
pendence ofv upon the density ratior1 /r2 is unclear. Ifū
were the same as the linear KH wave speed, which se
intuitively reasonable, then we would havev5r1 /(r1
1r2), but this identification is not supported by direct n
merical simulations@17#. When the densities are equal, how
ever, the valuev51/2 is required by symmetry, thereby re
moving this source of uncertainty. We shall therefore rest
attention to the caser1 /r251, in which the full visual width
dviz of the mixing layer for largex was experimentally found
to bedviz50.19uDuux/ū @11#. This width corresponds to 2h,
and replacingx by ūt then givesh50.095uDuut. Our best
experimental estimate ofh for r1 /r251 is thereforeh
50.095.
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To obtain a corresponding theoretical estimate from
~28!, we must choose values for the RT/RM parametersa
andu. We shall use the valuesa50.061 andu50.37 deter-
mined in the variable-acceleration experiments of Dimo
and Schneider@6#. These values combine with Eq.~28! for
r15r2 to yield h50.103, in very close agreement with th
value inferred fromdviz for the free shear layer. This i
highly encouraging, especially since the model contains
new or additional adjustable parameters associated with
KH instability. However, this agreement may to some ext
be fortuitous in view of the various uncertainties already d
cussed, particularly~a! the lack of equivalence between th
temporally and spatially evolving shear layers, and~b! our
use of an isotropic average over all tangential directions e
though the shear layer exhibits highly anisotropic large-sc
structures. In spite of these uncertainties, however, it is c
that the present generalized model provides a reasonab
not remarkably accurate representation of known interfa
instability behavior in a wide variety of special cases, a
this lends some encouragement to the hope that it will c
tinue to predict reasonable behavior in more complica
situations in which the features of these cases occur sim
neously in various combinations.

VI. CONCLUSION

We have presented a simple model, embodied in Eqs.~24!
and ~25!, for predicting the half-widthh(t) of the mixing
layer at an accelerated fluid interface with shear and c
pression. It was shown that the model correctly reprodu
the known linear stability behavior for this case@9#, and that
it reduces to the previous model of Ref.@7# in the absence o
shear and compression. The model thereby inherits the
behavior of the previous model, which was shown to c
rectly represent the known growth laws and scaling beha
for pure incompressible RT and RM instabilities in both t
linear and nonlinear regimes and to agree reasonably
y
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with experimental data for several different variable acc
eration histories@6,7#. Using the same values for the RT an
RM scaling parametersa andu, the present model was als
shown to provide an accurate description of the nonlin
growth of a free shear layer between two fluids of the sa
density. Thus the model correctly represents both the lin
and nonlinear mixing behavior of unstable fluid interfaces
a wide variety of special cases. It is hoped that this mo
will provide a useful tool for making predictive estimates
mixing at unstable fluid interfaces where the canonical R
RM, and KH instabilities occur in various combinations
the presence of anisotropic compression and/or expans
Of course, a more definitive assessment of the accuracy
utility of the model will require more detailed comparison
with data from experiments and/or three-dimensional dir
numerical simulations. Such comparisons will hopefully
forthcoming, and will most likely identify the need for fur
ther modifications and improvements. In particular, t
model in its present form, like its predecessor@7#, is espe-
cially simplistic in its treatment of demixing effects and th
transition between the linear and nonlinear regimes. Ot
desirable enhancements would include the capability to r
resent ablation, multimode initial perturbations, and differe
compression rates in the two fluids. However, there are p
sumably limits to how much physics can be reasonably
commodated within simple models of this type. These lim
are not yet clear, but may be expected to reveal themselve
due course.
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